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skin irritation produced by europium chloride were 
of the same magnitude and duration reported for 
the other members of the rare earth series (19-23). 
Moreover, the skin lesion from intradermal ad- 
ministration was the same (24). Europium chloride 
produced the same type and degree of depression as 
the other rare earths (19-23) did on the various 
biological systems studied. Also, the mechanism of 
death, cardiovascular collapse coupled with respira- 
tory paralysis, was identical to that of the other 
elements of the series. Although this element has a 
relatively low toxicity, care should be exercised to 
prevent skin lesions with nodule formation by  using 
appropriate clothing. 
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Dissolution Rate Studies 111. Penetration Model for 
Describing Dissolution of a Multiparticulate System 

By JERE E. GOYAN 

Danckwerts' penetration model is used t o  derive e uations for  the dissolution of 
solids in  a multiparticulate system. The  equations oxtained are capable of explain- 
ing the deviations from linearity of cube-root plots. The  loss of sensitivity in  dis- 
tinguishing differences between pdymorph dissolution rates at high agitation 

intensities also may be rationalized from these equations. 

T HAS BEEN shown in a previous publication (1) I that the Hixon-Crowell cube-root law (2) does 
not appear t o  hold for rapidly stirred systems. The 
data showed that a square-root law described the 
system more accurately. 

The cube-root law is derived using the diffusion 
layer model proposed by Nernst (3). It is of in- 
terest to derive an equation using the penetration 
theory described by Danckwerts (4). This model 
(derived for dissolution of a gas in a liquid) assumes 
that a turbulent liquid is a mass of eddies which are 
being exposed continuously to  fresh surfaces of a gas 
and then returned to the bulk of the liquid. It is 
proposed further that free diffusion takes place into 
each of the packets during the short period of time 
in which the packet is in contact with the surface. 
The rationality of such a model is supported strongly 
by the work of Fage and Townend ( 5 )  who found 
evidence of turbulent flow in a tube as close as 6 p 
from the interface. The validity of the model has 
been discussed by Danckwerts (4) and Hanratty 
(6). This model should be equally valid for the dis- 
solution of a solid into a liquid and has been demon- 
strated for the case of dissolution from a flat sur- 
face (7). 

Danckwerts defines the surface having ages be- 
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tween 1 and I + dt as  +(l)dt. 
unit area, R, (Gm. sec.-l 
surface would be 

Hence the flux per 
from a spherical 

where $(t) is the rate of difiusion into a stagnant 
liquid of infinite depth defined by 

Here C is the concentration, r the radial distance 
from the center, and a the radius of the sphere. The 
usual formulation for Fick's second law in spherical 
coordinates is (8) 

d2C 2 dC du d2u 
dr2 drZ r dr bt 

_ -  "- D - + + - o r  - = D -  (Eq.3) 
bt 

where a = rC, and t is the time in seconds. 
following boundary conditions are assumed: 

The 

r = a  C = C ~ a t a l l t > O  
r = m  C E O  

t = 0 C = 0 for all r 

The Laplace transform of Eq. 3 is 
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Defining q = the solution for Eq. 4 is 

ai = cle-gr + c2eqr 

or 

- cle-Qr c2eqT c = ~- + -, 
r r 

now C +  0 as r -+ m, therefore c2 = 0, and 
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Evaluating c1 by use of the boundary conditions 

and 

a r - a  C = CA - erfc ~ 

Z d O t  
(Eq. 7) 

Then, 

and 

and 

by Eq. 2. 
The actual form of qj(1) may be assumed as various 

functions. First the slowly stirred laminar flow 
case will be considered. For a sphere falling slowly 
in a liquid, the contact time for each liquid layer 
could be assumed constant r. (T is the time needed 
to generate one unit area of new surface.) The 
surface contact time between I and t + dt  then would 
be 

and Eq. 1 becomes 

R = $ ( t )  

The model assumes a layer a t  r = a which has a 
concentration CA’ (not necessarily saturated). 

Now the total flux of solute into the layer a t  r = 
a, R‘, would be 

R’ = kl - kz CA’ - R 

where k, is the intrinsic dissolution rate constant, kz 
is the crystallization rate constant, and the other 
symbols have their previous meanings. The attain- 
ment of a steady-state concentration, CA, would be 
extremelyrapid, in which case R‘ = 0. 

and 

Next the rapidly stirred turbulent flow case will 
be considered. In a turbulent liquid, the layer a t  a 
is again assumed to have the concentration CA’, and 
the form for @ ( t )  given by Danckwerts (4) is 

qj = p , - p t  

where p is the mean rate of production of fresh sur- 
face (proportional to stirring rate). 

Use of this function gives a new equation anal- 
ogous to  Eq. 10 

and again assumption of a steady-state concentra- 
tion a t  a gives 

and 

R = [ ( D / a )  4- ~ G I C A  0%. 14) 

Equations 11-14 are of interest since either model 
can explain the anomalous results shown by Hamlin 
el al. (9) for the dissolution of polymorphs. In 
either model as the intensity of agitation is increased 
( p  increases or T decreases), the term containing p or 
r may become large compared with kz. If one as- 
sumes that the difference in solubility of the poly- 
morphs is mainly due to differences in the crystal- 
lization rate constant kz [since ( k I / k 2 )  = C,, the 
saturation solubility], the observation that differ- 
ences in dissolution rate of polymorphs may decrease 
at high agitation intensities is explained. With 
more soluble polymorphs, kp could be large with 
respect to the other terms (kt also would be in- 
creased greatly), and the difference in dissolution 
rate would be maintained at  higher agitation in- 
tensities, as found by Milosovich (10). Anomalies 
also might be expected at small values of a, but 
these are harder to explain since C, also changes as a 
is reduced to very small values. 

Returning to Eq. 14 [a reasonable model for the 
previous work (l)] and taking surface areas into 
account 

where W is the weight and A the area of the particles. 
For monodisperse systems. this leads to the equa- 
tion’ 

* This equation now takes the change of a with time into 
account; this was unnecessary in the earlier portion, since the 
rateof change of a is negligible compared with the rate at which 
the liquid surface is being renewed. It also treats CA as a 
constant which is equivalent to assuming kt + 6 >> D/a 
(Ordinarily it is assumed to be Ca the saturation solubility.) 
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Fig. 1.-Hixon-Crowell rate constant us. reciprocal 
of the cube root of initial sample weight. 

where 

and 

D a N2/a CA 
Y 

e =  

N = number of particles; a, are constants con- 
taining density and geometric terms. 

Solution of this differential equation yields 

e + b Wi/a - b Y  
e + b Wo'/i = 3 b[ W'/: - Wo'/a] - e log 

0%. 17) 
where Wo is the original weight of the particles, and 
W is the weight at time t. Now Wo is always 
greater than W; therefore the logarithmic argument 
is always equal to  or less than 1. The series ex- 
pansion 

log x = 2 [- x - 1  + '/3 (9 + 
x + l  

was therefore utilized, dropping all but the first 
term.2 The resulting equation is 

This equation predicts that a cube-root plot 
should bend upwards with time, as it does (11). 
If initial dissolution rate is followed where only a 
small fraction has dissolved, Wo E W. Then let 
Wo'/a + W'/a = 2 Wo'/a, and take the derivative 
of Wo'/a - W'/a with respect to time giving 

This is then rearranged to give 

2 For c 5 0.5 b, the maximum error (W + Q) yould be 
about 3%. 

where K0wi/a is the Hixon-Crowell rate constant at 
t = 0. (The initial slope of a plot of Wo"a - W1'3 
versus time.) 

A plot of the data (12) shows the expected line- 
arity (Fig. 1). The value for e obtained from the 
plot is 4.76 X Gm.'/a sec.-I and b is 3.41 X 10-3 
Gm.'/a sec.-l. Equation 18 predicts that the Hixon- 
Crowell constant KW'/~ at any time t should be equal 
to 

2 e + b (Wi/a + Woi/a) Wo'/a [ e + b (Woi/a) wI/a + wol/a] K o W ' / ~  

The data (12) (using values of b and e from above) 
predict that the rate a t  Wo'/a - W'/a = 4 should 
be 0.069. 

Multiplying both sides of Eq. 18 by (Wol/a + 
W'/a.) one obtains 

The measured slope is 0.067. 

It Wo2/a - W2/a = [2 e + b(W'/a + Woi/a) 
3 

(Eq. 20) 
This plot would bend down with increasing time. 
Since the cube-root plot bends up and this one down, 
it does not seem surprising that the square-root plot 
appears linear throughout most of the dissolution. 

Returning to Eq. 12, i t  should be noted that for 
slow stirring and small a, the equation becomes 

D 
(Eq. 21) R = - C A  

which may be written 

P 

An equation identical to  that used by Higuchi and 
Hiestand (13) (when CA would + C.) to describe 
their work on micronized powders under slow stirring 
conditions. 

Thus it appears that a penetration type of model 
gives results consistent with present experimental 
data. The model may be visualized as a very thin 
layer having concentration CA which is being ex- 
posed constantly to fresh surfaces of liquid having a 
concentration much less than CA. The model seems 
at least as reasonable as the diffusion layer model and 
explains some of the anomalies which the diffusion 
layer model does not. 
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